Расстояние между центрами двух шаров равно 1 м, масса каждого шара 1 кг. Сила всемирного тяготения между ними равна
1) \(1 Н \)
2) \(0,001 Н \)
3) \(7 \cdot 10^{-5} Н \)
4) \(7 \cdot 10^{-11} Н\)
Расстояние между центрами двух шаров составляет \( r = 1 \, \text{м} \), а масса каждого шара равна \( m = 1 \, \text{кг} \). Найдём силу всемирного тяготения между ними с использованием формулы:
\(F = G \cdot \frac{m^2}{r^2},\)
где \( G = 6{,}67 \cdot 10^{-11} \, \text{Н·м}^2/\text{кг}^2 \) — гравитационная постоянная.
Подставим значения:
\(F = 6{,}67 \cdot 10^{-11} \cdot \frac{1^2}{1^2} = 6{,}67 \cdot 10^{-11} \, \text{Н}.\)
Ответ: \( 6{,}67 \cdot 10^{-11} \, \text{Н} \).
Таким образом, сила всемирного тяготения между двумя шарами составляет приблизительно \( 6{,}67 \cdot 10^{-11} \, \text{Н} \).
Решебник
"Физика - Учебник" по предмету Физика за 10 класс.
Aвторы:
Буховцев Б.Б., Мякишев Г.Я., Сотский Н.Н.
Задание
Расстояние между центрами двух шаров равно 1 м, масса каждого шара 1 кг. Сила всемирного тяготения между ними равна 1) \(1 Н \) 2) \(0,001 Н \) 3) \(7 \cdot 10^{-5} Н \) 4) \(7 \cdot 10^{-11} Н\)