На трапеции сидит гимнаст массой 60 кг. Он расположен на расстоянии 1/3 её длины, считая от одного из её концов. Определите натяжение тросов, на которых подвешена трапеция.
Дано:
\(m = 60 \, \text{кг}, \quad l_1 = \frac{1}{3}L\)
Найти:
\( T_1, T_2 \) — натяжение тросов.
Решение:
Условие равновесия системы (по второму закону Ньютона):
Сумма всех сил равна нулю:
\(T_1 + T_2 - mg = 0 \quad \Rightarrow \quad T_1 + T_2 = mg\).
Условия равновесия относительно точек:
- Относительно точки \( A \):
Момент силы \( T_1 \) равен \( 0 \), так как плечо равно \( 0 \).
\(0 - mg \cdot \frac{2}{3}L + T_2 \cdot L = 0 \quad \Rightarrow \quad T_2 = \frac{2}{3}mg.\)
- Относительно точки \( B \):
Момент силы \( T_2 \) равен \( 0 \), так как плечо равно \( 0 \).
\(-T_1 \cdot L + mg \cdot \frac{1}{3}L + 0 = 0 \quad \Rightarrow \quad T_1 = \frac{1}{3}mg\).
Решение системы уравнений:
Из уравнений:
\(T_1 = \frac{1}{3}mg, \quad T_2 = \frac{2}{3}mg\).
Подставляем численные значения:
\(mg = 60 \cdot 10 = 600 \, \text{Н},\)
\(T_1 = \frac{1}{3} \cdot 600 = 200 \, \text{Н}, \quad T_2 = \frac{2}{3} \cdot 600 = 400 \, \text{Н}\).
Ответ: Натяжение тросов: \(T_1 = 200 \, \text{Н}, \quad T_2 = 400 \, \text{Н}\).
Решебник
"Физика - Учебник" по предмету Физика за 10 класс.
Aвторы:
Буховцев Б.Б., Мякишев Г.Я., Сотский Н.Н.
Задание
На трапеции сидит гимнаст массой 60 кг. Он расположен на расстоянии 1/3 её длины, считая от одного из её концов. Определите натяжение тросов, на которых подвешена трапеция.