ГДЗ по математике за 5 класс Виленкин, Жохов, Чесноков, Александрова, Шварцбурд - Математика - Учебник. Часть 2

§5. Обыкновенные дроби — Упражнения — 5.445 — стр. 71

Вычислите:
\(\text{а)}\ \frac{1}{2} + \frac{1}{3}\)
\(\text{б)}\ \frac{1}{3} + \frac{2}{7}\)
\(\text{в)}\ \frac{2}{5} + \frac{1}{3}\)
\(\text{г)}\ \frac{3}{7} + \frac{4}{9}\)
\(\text{д)}\ \frac{5}{9} - \frac{1}{6}\)
\(\text{е)}\ \frac{3}{4} - \frac{1}{3}\)
\(\text{ж)}\ \frac{1}{6} + \frac{1}{3}\)
\(\text{з)}\ \frac{9}{5} - \frac{7}{10}\)
\(\text{и)}\ \frac{1}{2} - \frac{3}{8}\)
\(\text{к)}\ \frac{7}{15} - \frac{3}{10}\)
\(\text{л)}\ \frac{3}{8} + \frac{5}{12}\)
\(\text{м)}\ \frac{5}{9} - \frac{1}{6}\)
\(\text{н)}\ \frac{5}{11} + \frac{3}{5}\)
\(\text{о)}\ \frac{17}{30} - \frac{3}{6}\)
\(\text{п)}\ \frac{17}{35} - \frac{4}{15}\)

а

\(\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}\).

б

\( \frac{1}{3} + \frac{2}{7} = \frac{7}{21} + \frac{6}{21} = \frac{13}{21}\).

в

\(\frac{2}{5} + \frac{1}{3} = \frac{6}{15} + \frac{5}{15} = \frac{11}{15}\).

г

\(\frac{3}{7} + \frac{4}{9} = \frac{27}{63} + \frac{28}{63} = \frac{55}{63}\).

д

\(\frac{5}{9} - \frac{1}{6} = \frac{10}{18} - \frac{3}{18} = \frac{7}{18}\).

е

\(\frac{3}{4} - \frac{1}{3} = \frac{9}{12} - \frac{4}{12} = \frac{5}{12}\).

ж

\(\frac{1}{6} + \frac{1}{3} = \frac{1}{6} + \frac{2}{6} = \frac{3}{6} = \frac{1}{2}\).

з

\(\frac{9}{5} - \frac{7}{10} = \frac{18}{10} - \frac{7}{10} = \frac{11}{10} = 1 \frac{1}{10}\).

и

\(\frac{1}{2} - \frac{3}{8} = \frac{4}{8} - \frac{3}{8} = \frac{1}{8}\).

к

\( \frac{7}{15} - \frac{3}{10} = \frac{14}{30} - \frac{9}{30} = \frac{5}{30} = \frac{1}{6}\).

л

\(\frac{3}{8} + \frac{5}{12} = \frac{9}{24} + \frac{10}{24} = \frac{19}{24}\).

м

\(\frac{5}{9} - \frac{1}{6} = \frac{10}{18} - \frac{3}{18} = \frac{7}{18}\).

н

\(\frac{5}{11} + \frac{3}{5} = \frac{25}{55} + \frac{33}{55} = \frac{58}{55} = 1 \frac{3}{55}\).

о

\(\frac{17}{30} - \frac{3}{6} = \frac{17}{30} - \frac{15}{30} = \frac{2}{30} = \frac{1}{15}\).

п

\(\frac{17}{35} - \frac{4}{15} = \frac{51}{105} - \frac{28}{105} = \frac{23}{105}\).

Решебник

"Математика - Учебник. Часть 2" по предмету Математика за 5 класс.

Aвторы:

Александрова Л.А., Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.

Задание

Вычислите: \(\text{а)}\ \frac{1}{2} + \frac{1}{3}\) \(\text{б)}\ \frac{1}{3} + \frac{2}{7}\) \(\text{в)}\ \frac{2}{5} + \frac{1}{3}\) \(\text{г)}\ \frac{3}{7} + \frac{4}{9}\) \(\text{д)}\ \frac{5}{9} - \frac{1}{6}\) \(\text{е)}\ \frac{3}{4} - \frac{1}{3}\) \(\text{ж)}\ \frac{1}{6} + \frac{1}{3}\) \(\text{з)}\ \frac{9}{5} - \frac{7}{10}\) \(\text{и)}\ \frac{1}{2} - \frac{3}{8}\) \(\text{к)}\ \frac{7}{15} - \frac{3}{10}\) \(\text{л)}\ \frac{3}{8} + \frac{5}{12}\) \(\text{м)}\ \frac{5}{9} - \frac{1}{6}\) \(\text{н)}\ \frac{5}{11} + \frac{3}{5}\) \(\text{о)}\ \frac{17}{30} - \frac{3}{6}\) \(\text{п)}\ \frac{17}{35} - \frac{4}{15}\)