ГДЗ по алгебре за 8 класс Макарычев, Миндюк, Нешков, Суворова - Алгебра - Учебник

Дополнительные упражнения к главе II — К параграфу 6 — 493 — стр. 112

Найдите значение выражения:
а) \(\frac{1}{11-2 \sqrt{30}}-\frac{1}{11+2 \sqrt{30}}\);
б) \(\frac{5}{3+2 \sqrt{2}}+\frac{5}{3-2 \sqrt{2}}\);
в) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\);
г) \(\frac{11+\sqrt{21}}{11-\sqrt{21}}+\frac{11-\sqrt{21}}{11+\sqrt{21}}\).

а

\(\frac{1}{11-2 \sqrt{30}}-\frac{1}{11+2 \sqrt{30}}=\frac{11+2 \sqrt{30}-(11-2 \sqrt{30})}{(11-2 \sqrt{30})(11+2 \sqrt{30})}=\frac{4 \sqrt{30}}{121-4 \cdot 30}=4 \sqrt{30}\).

б

\(\frac{5}{3+2 \sqrt{2}}+\frac{5}{3-2 \sqrt{2}}=5(\frac{1}{3+2 \sqrt{2}}+\frac{1}{3-2 \sqrt{2}})=5(\frac{3-2 \sqrt{2}+3+2 \sqrt{2}}{(3+2 \sqrt{2})(3-2 \sqrt{2})})=\frac{5 \cdot 6}{9-4 \cdot 2}=30\).

в

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{(\sqrt{5}-\sqrt{3})^{2}+(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\frac{5-2 \sqrt{15}+3+5+2 \sqrt{15}+3}{5-3}=\frac{16}{2}=8\).

г

\(\frac{11+\sqrt{21}}{11-\sqrt{21}}+\frac{11-\sqrt{21}}{11+\sqrt{21}}=\frac{(11+\sqrt{21})^{2}+(11-\sqrt{21})^{2}}{(11-\sqrt{21})(11+\sqrt{21})}=\frac{121+22 \sqrt{21}+21+121-22 \sqrt{21}+21}{121-21}=\frac{284}{100}=2,84\).

Решебник

"Алгебра - Учебник" по предмету Алгебра за 8 класс.

Aвторы:

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б.

Задание

Найдите значение выражения: а) \(\frac{1}{11-2 \sqrt{30}}-\frac{1}{11+2 \sqrt{30}}\); б) \(\frac{5}{3+2 \sqrt{2}}+\frac{5}{3-2 \sqrt{2}}\); в) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\); г) \(\frac{11+\sqrt{21}}{11-\sqrt{21}}+\frac{11-\sqrt{21}}{11+\sqrt{21}}\).