ГДЗ по алгебре за 9 класс Макарычев, Миндюк, Нешков, Суворова - Алгебра - Учебник

§10. Геометрическая прогрессия — 29. Определение геометрической прогрессии — 612 — стр. 174

(Задача-исследование.) Могут ли длины сторон прямоугольного треугольника составлять геометрическую прогрессию?
1) Сделайте чертёж и введите необходимые обозначения.
2) Какую теорему из курса геометрии можно использовать при ответе на вопрос задачи?
3) Составьте уравнение и решите его.
4) Сформулируйте вывод и выполните проверку.

Уравнение \(x^2 - y^2 = 30\) можно представить в виде разности квадратов: \((x - y)(x + y) = 30\). Далее, в условии дано, что сумма координат точки равна 5, т.е. \(x + y = 5\)
Составим систему уравнений:
\(\begin{cases}x + y = 5 \\(x - y)(x + y) = 30\end{cases}\)
Из первого уравнения получаем \(x = 5 - y\). Подставим это выражение во второе уравнение:
\((5 - y - y)(5 - y + y) = 30\)
Раскроем скобки и упростим:
\(-2y \cdot 5 = 30\)
Отсюда получаем \(y = -0.5\). Теперь, подставив \(y\) в первое уравнение, находим \(x\):
\(x = 5 - (-0.5) = 5.5\)
Итак, точка \((5.5, -0.5)\) является решением системы уравнений и, следовательно, удовлетворяет условиям задачи.

Решебник

"Алгебра - Учебник" по предмету Математика за 9 класс.

Aвторы:

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б.

Задание

(Задача-исследование.) Могут ли длины сторон прямоугольного треугольника составлять геометрическую прогрессию? 1) Сделайте чертёж и введите необходимые обозначения. 2) Какую теорему из курса геометрии можно использовать при ответе на вопрос задачи? 3) Составьте уравнение и решите его. 4) Сформулируйте вывод и выполните проверку.