В геометрической прогрессии \(\left(x_{n}\right)\):
а) \(q=-\frac{1}{3}, n=5, S_{n}=20\frac{1}{3}\); найдите \(x_{1}\) и \(x_{n}\);
б) \(x_{1}=11, x_{n}=88, S_{n}=165\); найдите \(q\) и \(n\);
в) \(x_{1}=\frac{1}{2}, q=-\frac{1}{2}, S_{n}=\frac{21}{64}\); найдите \(n\) и \(x_{n}\);
г) \(q=\sqrt{3}, x_{n}=18\sqrt{3}, S_{n}=26\sqrt{3}+24\); найдите \(x_{1}\) и \(n\).
\(S_5 = x_1 \cdot \frac{q^5-1}{q-1}\)
\(x_1 \cdot \frac{(-\frac{1}{3})^5-1}{-\frac{1}{3}-1} = 20 \frac{1}{3}\)
\(x_1 \cdot \frac{-\frac{1}{243}-1}{-\frac{4}{3}} = \frac{61}{3}\)
\(x_1 \cdot \frac{244}{243} \cdot \frac{3}{4} = \frac{61}{3}\)
\(x_1 = \frac{61}{3} \cdot \frac{81}{61} = 27\)
\(x_5 = x_1 q^4 = 27 \cdot \frac{1}{3^4} = \frac{1}{3}\).
\(x_n = 88\)
\(q^{n-1} = \frac{88}{11} = 8\)
\(S_{n-1} = x_1 \cdot \frac{q^{n-1}-1}{q-1} = S_n - x_n\)
\(11 \cdot \frac{8-1}{q-1} = 165 - 88\)
\(\frac{77}{q-1} = 77\)
\(q = 2\)
\(x_n = x_1 q^{n-1}\)
\(88 = 11 \cdot 2^{n-1}\)
\(2^{n-1} = 8\)
\(n-1 = 3\)
\(n = 4\).
\(S_n = x_1 \cdot \frac{q^n-1}{q-1}\)
\(\frac{21}{64} = \frac{1}{2} \cdot \frac{(-\frac{1}{2})^n-1}{-\frac{1}{2}-1}\)
\(\frac{21}{32} = \frac{(-\frac{1}{2})^n-1}{-\frac{3}{2}}\)
\(-\frac{63}{64} = (-\frac{1}{2})^n-1\)
\((-\frac{1}{2})^n = \frac{1}{64}\)
\(n = 6\)
\(x_6 = x_1 q^5 = \frac{1}{2} \cdot (-\frac{1}{2})^5 = -\frac{1}{64}\).
\(x_n = 18 \sqrt{3}\)
\(S_n = x_1 \cdot \frac{q^n-1}{q-1} = 26 \sqrt{3} + 24\)
\(\frac{18 \sqrt{3} \cdot \sqrt{3}-x_1}{\sqrt{3}-1} = 26 \sqrt{3} + 24\)
\(54 - x_1 = (26 \cdot 3 - 26 \sqrt{3} + 24 \sqrt{3} - 24)\)
\(x_1 = 2 \sqrt{3}\)
\(18 \sqrt{3} = 2 \sqrt{3} \cdot (\sqrt{3})^{n-1}\)
\((\sqrt{3})^{n-1} = 9\)
\(n-1 = 4\)
\(n = 5\).
Решебник
"Алгебра - Учебник" по предмету Математика за 9 класс.
Aвторы:
Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б.
Задание
В геометрической прогрессии \(\left(x_{n}\right)\): а) \(q=-\frac{1}{3}, n=5, S_{n}=20\frac{1}{3}\); найдите \(x_{1}\) и \(x_{n}\); б) \(x_{1}=11, x_{n}=88, S_{n}=165\); найдите \(q\) и \(n\); в) \(x_{1}=\frac{1}{2}, q=-\frac{1}{2}, S_{n}=\frac{21}{64}\); найдите \(n\) и \(x_{n}\); г) \(q=\sqrt{3}, x_{n}=18\sqrt{3}, S_{n}=26\sqrt{3}+24\); найдите \(x_{1}\) и \(n\).