ГДЗ по алгебре за 9 класс Макарычев, Миндюк, Нешков, Суворова - Алгебра - Учебник

§7. Уравнения с двумя перемннными и их системы — 19. Уравнение с двумя переменными и его график — 359 — стр. 114

Найдите координаты точек пересечения графика данного уравнения с осью \(x\) и с осью \(y\). Постройте этот график.
a) \(x-2 y=3\)
б) \(y+5 x=-10\);
в) \(4 x-0,5 y=2\);
г) \(2-2 x=y\).

а

\(x-2 y=3\)

\(\begin{cases}x = 0 \\-2y = 3\end{cases} \Leftrightarrow \begin{cases}x = 0 \\y = -1.5\end{cases} \\ \begin{cases}y = 0 \\x = 3\end{cases}\)

\(\frac{x}{y}|\frac{0}{-1.5}|\frac{3}{0}\).

б

\(y + 5x = -10 \\ 5x + y = -10 \\ \begin{cases}x = 0 \\y = -10\end{cases} \\ \begin{cases}y = 0 \\5x = -10\end{cases} \Leftrightarrow \begin{cases}y = 0 \\x = -2\end{cases}\)

\(\frac{x}{y}|\frac{0}{-10}|\frac{-2}{0}\).

в

\( 4x - 0.5y = 2 \\ \begin{cases}x = 0 \\-0.5y = 2\end{cases} \Leftrightarrow \begin{cases}x = 0 \\y = -4\end{cases} \\ \begin{cases}y = 0 \\4x = 2\end{cases} \Leftrightarrow \begin{cases}y = 0 \\x = 0.5\end{cases}\)

\(\frac{x}{y}|\frac{0}{-4}|\frac{0.5}{0}\).

г

\(2 - 2x = y \\ 2x + y = 2 \\ \begin{cases}x = 0 \\y = 2\end{cases} \\ \begin{cases}y = 0 \\2x = 2\end{cases} \Leftrightarrow \begin{cases}y = 0 \\x = 1\end{cases}\)

\(\frac{x}{y}|\frac{0}{2}|\frac{1}{0}\).

Решебник

"Алгебра - Учебник" по предмету Математика за 9 класс.

Aвторы:

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б.

Задание

Найдите координаты точек пересечения графика данного уравнения с осью \(x\) и с осью \(y\). Постройте этот график. a) \(x-2 y=3\) б) \(y+5 x=-10\); в) \(4 x-0,5 y=2\); г) \(2-2 x=y\).