Выполните действия:
a) \(\frac{a^{2}-25}{a+3} \cdot \frac{1}{a^{2}+5 a}-\frac{a+5}{a^{2}-3 a}\);
б) \(\frac{1-2 x}{2 x+1}+\frac{x^{2}+3 x}{4 x^{2}-1}: \frac{3+x}{4 x+2}\);
в) \(\frac{b-c}{a+b}-\frac{a b-b^{2}}{a^{2}-a c} \cdot \frac{a^{2}-c^{2}}{a^{2}-b^{2}}\);
г) \(\frac{a^{2}-4}{x^{2}-9}: \frac{a^{2}-2 a}{x y+3 y}+\frac{2-y}{x-3}\).
\(\frac{a^{2}-25}{a+3} \cdot \frac{1}{a^{2}+5a}-\frac{a+5}{a^{2}-3a}=\frac{(a-5)(a+5)}{a(a+3)(a+5)}-\frac{a+5}{a(a-3)}=\)
\(=\frac{a-5}{a(a+3)}-\frac{a+5}{a(a-3)}=\frac{(a-5)(a-3)-(a+5)(a+3)}{a(a+3)(a-3)} =\)
\(=\frac{a^{2}-8a+15-(a^{2}+8a+15)}{a(a+3)(a-3)}=-\frac{16a}{a(a+3)(a-3)}=-\frac{16}{a^{2}-9}\).
\(\frac{1-2x}{2x+1}+\frac{x^{2}+3x}{4x^{2}-1}:\frac{3+x}{4x+2}=\frac{1-2x}{2x+1}+\frac{x(x+3)}{(2x-1)(2x+1)} \cdot \frac{2(2x+1)}{x+3} =\)
\(=\frac{1-2x}{1+2x}-\frac{2x}{1-2x}=\frac{(1-2x)^{2}-2x(1+2x)}{(1+2x)(1-2x)}=\frac{1-4x+4x^{2}-2x-4x^{2}}{(1+2x)(1-2x)}=\)
\(=\frac{1-6x}{1-4x^{2}}\).
\(\frac{b-c}{a+b}-\frac{ab-b^{2}}{a^{2}-ac} \cdot \frac{a^{2}-c^{2}}{a^{2}-b^{2}}=\frac{b-c}{a+b}-\frac{b(a-b)}{a(a-c)} \cdot \frac{(a-c)(a+c)}{(a-b)(a+b)} =\)
\(=\frac{b-c}{a+b}-\frac{b(a+c)}{a(a+b)}=\frac{a(b-c)-b(a+c)}{a(a+b)}=\)
\(=\frac{ab-ac-ab-bc}{a(a+b)}=-\frac{c(a+b)}{a(a+b)}=-\frac{c}{a}\).
\(\frac{a^{2}-4}{x^{2}-9}: \frac{a^{2}-2a}{xy+3y}+\frac{2-y}{x-3}=\frac{(a-2)(a+2)}{(x-3)(x+3)} \cdot \frac{y(x+3)}{a(a-2)}+\frac{2-y}{x-3}=\)
\(=\frac{y(a+2)}{a(x-3)}+\frac{2-y}{x-3}=\frac{y(a+2)+a(2-y)}{a(x-3)}=\frac{a y+2y+2a-a y}{a(x-3)}=\frac{2(a+y)}{a(x-3)}\).
Решебник
"Алгебра - Учебник" по предмету Алгебра за 8 класс.
Aвторы:
Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б.
Задание
Выполните действия: a) \(\frac{a^{2}-25}{a+3} \cdot \frac{1}{a^{2}+5 a}-\frac{a+5}{a^{2}-3 a}\); б) \(\frac{1-2 x}{2 x+1}+\frac{x^{2}+3 x}{4 x^{2}-1}: \frac{3+x}{4 x+2}\); в) \(\frac{b-c}{a+b}-\frac{a b-b^{2}}{a^{2}-a c} \cdot \frac{a^{2}-c^{2}}{a^{2}-b^{2}}\); г) \(\frac{a^{2}-4}{x^{2}-9}: \frac{a^{2}-2 a}{x y+3 y}+\frac{2-y}{x-3}\).